Analysis of Challenges and Barriers to Promoting Climate-Smart Agriculture in Rural Areas of the Sistan Plain: A Qualitative Approach

Document Type : Original Article

Authors

1 University of Zabol, Zabol, Iran

2 Agricultural Research, Education & Extension Organization (AREEO), Shiraz, Iran

10.22067/jrrp.v13i4.2501-1120

Abstract

Purpose – This study examines the barriers to promoting climate-smart agriculture (CSA) in rural areas of the Sistan Plain. Using a qualitative approach and focus group discussions, data were collected from farmers and local experts (54 participants). The discussions were analyzed through inductive content analysis, coding, and classification systems.
Findings – The results reveal that barriers to CSA promotion fall into seven main categories: financial, institutional, technical and infrastructural, knowledge gaps, demographic, environmental, and market challenges. Key challenges include high initial costs, weak policies and institutional support, lack of practical knowledge and training, and adverse climatic conditions. Practical recommendations involve conducting specialized training, establishing pilot projects, and strengthening communication infrastructure. From a policy perspective, developing national strategies, providing financial incentives and credit facilities, and fostering collaboration across various sectors are crucial. This study offers comprehensive and integrated solutions to assist policymakers and agricultural practitioners in achieving sustainable development and strengthening CSA resilience.
Practical Implications – This study proposes several practical solutions to address the identified challenges, including organizing specialized and operational training programs for farmers and experts, implementing pilot projects to demonstrate CSA effectiveness and benefits, developing communication and technical infrastructure such as high-speed internet access and advanced equipment, formulating national policies to provide financial and institutional support for CSA, and fostering collaboration among governmental, private, and local community sectors.
Originality/Value – This research is one of the first comprehensive studies analyzing barriers to CSA promotion in Iran. Given the unique conditions of the Sistan Plain, the findings can serve as a model for other underprivileged regions in Iran and similar countries. The practical solutions and effective policy recommendations presented here mark a significant step toward sustainable development and greater agricultural resilience to climate change.

Keywords

Main Subjects


  1. Abegunde, V. O., Sibanda, M., & Obi, A. (2019). The dynamics of climate change adaptation in Sub-Saharan Africa: A review of climate-smart agriculture among small-scale farmers. Climate, 7(11). https://doi.org/10.3390/cli7110132
  2. Adhikari, D., Khatun, P., Koley, S., Sen, M., & Ghosh, S. K. (2024). Nanotechnology: A double-edged sword for future smart agriculture and phytopathological management in plants. Agriculture and Food Sciences Research11(2), 203–221. https://doi.org/10.20448/aesr.v11i2.6253
  3. Alare, R., Owusu, E. H., & Owusu, K. (2018). Climate smart agriculture practices in Semi-arid Northern Ghana: Implications for sustainable livelihoods. Journal of Sustainable Development, 11, 57–70. https://doi.org/10.5539/jsd.v11n5p57
  4. Amani-Male, O., Feizabadi, Y., & Norouzi, G. (2024). A model-based evaluation of farmers’ income variability under climate change (Case study: Autumn crops in Iran). Brazilian Journal of Biology, 84. https://doi.org/10.1590/1519-6984.261997
  5. Atal, J. C. (2024). Productivity of hybrid rice (Mestizo 27) under different water and nutrient management systems. Journal of Asian Scientific Research14(4), 535–549. https://doi.org/10.55493/5003.v14i4.5145
  6. Baffour-Ata, F., Atta-Aidoo, J., Said, R. O., Nkrumah, V., Atuyigi, S., & Analima, S. M. (2023). Building the resilience of smallholder farmers to climate variability: Using climate-smart agriculture in Bono East Region, Ghana. Heliyon, 9(11). https://doi.org/10.1016/j.heliyon.2023.e21815
  7. Bhatnagar, S., Chaudhary, R., Sharma, S., Janjhua, Y., Thakur, P., Sharma, P., & Keprate, A. (2024). Exploring the dynamics of climate-smart agricultural practices for sustainable resilience in a changing climate. Environmental and Sustainability Indicators, 24. https://doi.org/10.1016/j.indic.2024.100535
  8. El-Chami, D., Daccache, A., & El Moujabber, M. (2020). How can sustainable agriculture increase climate resilience? A systematic review. Sustainability, 12(8). https://doi.org/10.3390/su12083119
  9. FAO. (2020). The state of food security and nutrition in the world. Transforming food systems to deliver affordable healthy diets for all. Rome: FAO. https://doi.org/10.4060/cd1254en
  10. File, D. J. M. B., & Nhamo, G. (2023). Farmers’ choice for indigenous practices and implications for climate-smart agriculture in northern Ghana. Heliyon, 9(11), e22162. https://doi.org/10.1016/j.heliyon.2023.e22162
  11. Gabriel, I., Olajuwon, F., Klauser, D., Michael, B., & Renn, M. (2023). State of climate smart agriculture (CSA) practices in the North Central and Northwest zones Nigeria. CABI Agriculture and Bioscience, 4(1). https://doi.org/10.1186/s43170-023-00156-4
  12. Gemtou, M., Kakkavou, K., Anastasiou, E., Fountas, S., Pedersen, S. M., Isakhanyan, G., . . . Pazos-Vidal, S. (2024). Farmers’ Transition to Climate-Smart Agriculture: A Systematic Review of the Decision-Making Factors Affecting Adoption. Sustainability (Switzerland), 16(7). https://doi.org/10.3390/su16072828
  13. George, W., & Rwegasira, G. (2017). Economic evaluation of insect pest’s management in cashew production in Mtwara, Tanzania. Huria: Journal of the Open University of Tanzania, 24(2), 59-70. https://www.ajol.info/index.php/huria/article/view/168087
  14. Hussein, A. (2024). Climate smart agriculture strategies for enhanced agricultural resilience and food security under a changing climate in Ethiopia. Sustainable Environment, 10(1). https://doi.org/10.1080/27658511.2024.2345433
  15. Jahansoozi, M., Farahani, H., Mohammadi Yeganeh, B., & Einali, J. (2024). Modeling the Impacts and Consequences of Climate Change on Sustainable Livelihood of Rural Communities (Case study: Rural Households in Mashhad County). Journal of Research and Rural Planning, 13(1), 1-23. https://doi.org/10.22067/jrrp.v13i1.2307-1084
  16. Jamshidi, A., Nouri Zamanabadi, S. H., & Ebrahimi, M. S. (2015). Adaptation to Climate Change in Sirvan County, Ilam Province: Options and Constraints. Journal of Research and Rural Planning, 4(2), 79-95. https://doi.org/10.22067/jrrp.v4i2.39710
  17. Kagabo, D. M., Byandaga, L., Gatsinzi, P., Mvuyibwami, P., Munyangeri, Y. U., Ntwari, N., & Ouedraogo, M. (2025). Scalingclimate information services and climate smart agriculture through bundled business models. Climate Services, 37. https://doi.org/10.1016/j.cliser.2024.100526
  18. Kamara, A., Conteh, A. R., Rhodes, E. R. & Cooke, R. A. (2019). The relevance of smallholder farming to African agricultural growth and development. African Journal of Food, Agriculture, Nutrition and Development, 19(1), 14043-14065. https://doi.org/10.18697/ajfand.84.BLFB1010
  19. Kom, Z., Nethengwe, N. S., Mpandeli, N. S., & Chikoore, H. (2022). Determinants of small-scale farmers’ choice and adaptive strategies in response to climatic shocks in Vhembe District, South Africa. GeoJournal, 87(2), 677-700. https://doi.org/10.1007/s10708-020-10272-7
  20. Komba, C., & Muchapondwa, E. (2018). Adaptation to climate change by smallholder farmers in Tanzania. In C. S. Berck, P. Berck, & S. D. Falco (Eds.), Agricultural Adaptation to Climate Change in Africa: Food Security in a Changing Environment (pp. 129-168). London: Routledge. https://doi.org/10.4324/9781315149776
  21. Krueger, R. A., & Casey, M. A. (2015). Focus Group Interviewing Handbook of Practical Program Evaluation (pp. 506-534). New York: John Wiley & Sons, Inc. https://doi.org/10.1002/9781119171386.ch20
  22. Kurgat, B. K., Lamanna, C., Kimaro, A., Namoi, N., Manda, L., & Rosenstock, T. S. (2020). Adoption of climate smart agriculture technologies in Tanzania. Frontiers in Sustainable Food Systems, 4, 55. https://doi.org/10.3389/fsufs.2020.00055
  23. Larasati, N., Putri, A. A., Soemodinoto, A. S., Alyssa, N., & Shoofiyani, O. S. (2024). Unified theory of acceptance and use of technology model to understand farmer’s readiness: Implementation of precision agriculture based on digital IoT monitoring apps in West Java, Indonesia. Asian Journal of Agriculture and Rural Development14(4), 176–183. https://doi.org/10.55493/5005.v14i4.5258
  24. Lupogo, D. D., & Mkuna, E. (2023). Climate- smart agriculture technologies and smallholder farmers’ welfare: evidence from cashew nuts (Anacardium Occidentale) farming system in Lindi, Tanzania. Global Social Welfare, 10(3), 207-223. https://doi.org/10.1007/s40609-023-00266-x
  25. Mabhaudhi, T., Dirwai, T. L., Taguta, C., Senzanje, A., Abera, W., Govid, A., . . . Petrova Chimonyo, V. G. (2025). Linking weather and climate information services (WCIS) to Climate-Smart Agriculture (CSA) practices. Climate Services, 37. https://doi.org/10.1016/j.cliser.2024.100529
  26. Maddison, D. (2007). The perception of and adaptation to climate change in africa; policy research working paper volume 4308; World Bank Publications: Washington, DC, USA. https://hdl.handle.net/10986/7507
  27. Makamane, A., Van Niekerk, J., Loki, O., & Mdoda, L. (2023). Determinants of climate-smart agriculture (CSA) technologies adoption by smallholder food crop farmers in Mangaung Metropolitan Municipality, Free State. South African Journal of Agricultural Extension (SAJAE), 51(4), 52-74. https://doi.org/10.17159/2413-3221/2023/v51n4a1645
  28. Makkar, M. K., Bhat, B. A., Gupta, N., & Vaid, A. (2023). Harvesting Sustainable Agriculture with Climate Finance: Review. Paper presented at the E3S Web of Conferences. https://doi.org/10.1051/e3sconf/202345301042
  29. Mehta, P., Dhaliwal, L. K., Baweja, P. K., Jangra, M. S., & Bhardwaj, S. K. (2022). Concept of climate smart villages using artificial intelligence/machine learning. In Visualization Techniques for Climate Change with Machine Learning and Artificial Intelligence (pp. 359-377). https://doi.org/10.1016/B978-0-323-99714-0.00010-8
  30. Mohammadpour, A. (2013). Anti-method qualitative research method 1 (rationale and design in qualitative methodology). Tehran: Jame’eh-Shenasan. (In Persian)
  31. Mujeyi, A., Mudhara, M., & Mutenje, M. J. (2022). Adoption patterns of climate-smart agriculture in integrated crop-livestock smallholder farming systems of Zimbabwe. Climate and Development, 14(5), 399-408. https://doi.org/10.1080/17565529.2021.1930507
  32. Mungai, E. M., Ndiritu, S. W., & da Silva, I. (2021). Unlocking Climate Finance Potential for Climate Adaptation: Case of Climate Smart Agricultural Financing in Sub Saharan Africa. In African Handbook of Climate Change Adaptation: With 610 Figures and 361 Tables (pp. 2063-2083). https://doi.org/10.1007/978-3-030-45106-6_172
  33. Munir, M., & Glorino Rumambo Pandin, M. (2023). The Prophet Joseph on Qur’an and The Historical Philosophical Perspective and Its Relevance for Human Development. Qubahan Academic Journal, 3(4), 219–233. https://doi.org/10.48161/qaj.v3n4a175
  34. Murugesan, R. (2024). Climate-smart agriculture in India: Greenhouse gas mitigation strategies. Journal of Agrometeorology, 26(4), 526-534. https://doi.org/10.54386/jam.v26i4.2771
  35. Musafiri, C. M., Kiboi, M., Macharia, J., Ng'etich, O. K., Kosgei, D. K., Mulianga, B., . . . Ngetich, F. K. (2022). Adoption of climate-smart agricultural practices among smallholder farmers in Western Kenya: do socioeconomic, institutional, and biophysical factors matter? Heliyon, 8(1), e08677. https://doi.org/10.1016/j.heliyon.2021.e08677
  36. Mutekwa, T. (2009). Climate change impacts and adaptation in the agricultural sector: The case of smallholder farmers in Zimbabwe. Journal of Sustainable Development in Africa, 11, 237-256. https://jsd-africa.com/Jsda/V11N02_Fal2009/PDF/Climate%20ChangeImpactsAdaptation.pdf
  37. Najafi, S., Sharafati, A., & Moghaddam, H. K. (2023). Impact of climate change adaptation strategies on groundwater resources: a case study of Sari-Neka coastal aquifer, Northern Iran. Environmental Earth Sciences, 82(23). https://doi.org/10.1007/s12665-023-11205-6
  38. Naveen, N., Datta, P., Behera, B., & Rahut, D. B. (2024). Climate-Smart Agriculture in South Asia: exploring practices, determinants, and contribution to Sustainable Development Goals. Mitigation and Adaptation Strategies for Global Change, 29(4). https://doi.org/10.1007/s11027-024-10126-4
  39. Nhantumbo, A., Hironobu, T., Americo, U., & Satoshi, M. (2017). Determinants of adoption of technologies for cashew production in Nampula Mozambique. Journal of Experimental Agriculture International, 17(5), 1-11. https://doi.org/10.9734/JEAI/2017/36035
  40. Ogunyiola, A., Gardezi, M., & Vij, S. (2022). Smallholder farmers’ engagement with climate smart agriculture in Africa: role of local knowledge and upscaling. Climate Policy, 22(4), 411-426. https://doi.org/10.1080/14693062.2021.2023451
  41. Oteng, C., & Egbendewe, A. Y. G. (2024). Agricultural input supply system and contract on nudging the adoption intensity of climate-smart agriculture in Ghana. Climatic Change, 177(12). https://doi.org/10.1007/s10584-024-03836-w
  42. Ouédraogo, M., Houessionon, P., Zougmoré, R. B., & Partey, S. T. (2019). Uptake of climate-smart agricultural technologies and practices: Actual and potential adoption rates in the climate-smart village site of Mali. Sustainability, 11(17). https://doi.org/10.3390/su11174710
  43. Pakrooh, P., & Kamal, M. A. (2023). Modeling the potential impacts of climate change on wheat yield in Iran: Evidence from national and provincial data analysis. Ecological Modelling, 486. https://doi.org/10.1016/j.ecolmodel.2023.110513
  44. Podineh, M. R., Toulabinezhad, M., & Hosienjani, A. (2017). Study of Socio-economic Factors Influencing on Adaptation of Smallholder Farmers to Climate Change in Mountainous Areas (Case study: Malavi Dehestan of Poldokhtar County). Journal of Research and Rural Planning, 6(3), 169-184. https://doi.org/10.22067/jrrp.v5i4.61969
  45. Safdar, M., Shahid, M. A., Yang, C., Rasul, F., Tahir, M., Raza, A., & Sabir, R. M. (2024). Climate smart agriculture and resilience. In Emerging Technologies and Marketing Strategies for Sustainable Agriculture (pp. 28-52). https://doi.org/10.4018/979-8-3693-4864-2.ch002
  46. Sahoo, D., Mohanty, P., Mishra, S., Behera, M. K., & Mohapatra, S. (2025). Does climate-smart agriculture technology improve farmers' subjective well-being? Micro-level evidence from Odisha, India. Farming System, 3(1). https://doi.org/10.1016/j.farsys.2024.100124
  47. Sanogo, K., Touré, I., Arinloye, D. D. A. A., Dossou-Yovo, E. R., & Bayala, J. (2023). Factors affecting the adoption of climate-smart agriculture technologies in rice farming systems in Mali, West Africa. Smart Agricultural Technology, 5. https://doi.org/10.1016/j.atech.2023.100283
  48. Serote, B., Mokgehle, S., Du Plooy, C., Mpandeli, S., Nhamo, L., & Senyolo, G. (2021). Factors influencing the adoption of climate-smart irrigation technologies for sustainable crop productivity by smallholder farmers in Arid Areas of South Africa. Agriculture, 11(12). https://doi.org/10.3390/agriculture11121222
  49. Stewart, D. W., & Shamdasani, P. N. (2015). Focus groups: theory and practice. New York: Sage Publications. https://psycnet.apa.org/doi/10.4135/9781412991841
  50. Zakaria, A., Azumah, S. B., Appiah-Twumasi, M., & Dagunga, G. (2020). Adoption of climate-smart agricultural practices among farm households in Ghana: The role of farmer participation in training programmes. Technology in Society, 63, 101338. https://doi.org/10.1016/j.techsoc.2020.101338
  51. Zhao, J., Liu, D., & Huang, R. (2023). A Review of Climate-Smart Agriculture: Recent Advancements, Challenges, and Future Directions. Sustainability (Switzerland), 15(4). https://doi.org/10.3390/su15043404

 

CAPTCHA Image