Land Subsidence Vulnerability Assessment of Rural Settlements in Fars Province

Document Type : Scientific Articles

Authors

Shiraz University

Abstract

Purpose- Land subsidence is caused by natural factors and human activities around the world. Fars Province, located in the south of Iran, is subject to land subsidence due to the uncontrolled exploitation of groundwater, causing damages to the population and human settlements and also environmental, social and economic areas.
Design/methodology/approach- The present research is descriptive in terms of describing land subsidence in the case study region, whereas it is also analytical as time series analysis techniques based on Radar Interferometry (InSAR) is applied to monitor temporal changes in subsidence in Darab and Fasa Plains, including 470 rural points. Using 8 ENVISAT ASAR images spanning between 2005 and 2010, nine Interferograms were processed. In the study area. Geographic Information System (GIS) is then used to study groundwater level decline at the well locations in a 24-year period (from 1991 to 2015).
Findings- The results of the research confirm that there is a significant correlation between groundwater water level decline and land surface subsidence. Time series analysis of the processed Interferograms indicate the mean displacement velocity map, demonstrating the maximum subsidence rate of 25 cm/yr. The InSAR analysis reveal within the study area subsidence rate of 25 cm/year in 24 years period and locally exceeding 30 cm/yr in the last decade. This area of significant subsidence is limited in its spatial extent to the agricultural land and is partly influenced by the large-scale over-exploitation of groundwater resources in the region study. The temporal and areal relationships of subsidence and groundwater level data suggest that a significant part of the observed subsidence in the Darab region is caused by intense groundwater extraction which has led to widespread compaction within the upper parts of the up to 300m. Socioeconomic analysis and the subsidence hazard map show that 105523 people are generally at risk of subsidence, of 65068 who are at high risk. In addition, there are 2679 socioeconomic infrastructures such as public service at risk of damage by land subsidence.
Research limitations/implications- Limitation in In SAR data access, especially for long-term data was one of the main limitations in land subsidence research and also in this research.
Practical implications- Integrated water resource management and the observed extraction of groundwater could influence the subsidence rate in the regions exposed to land subsidence.
Originality/value- This research will be important to provide vulnerability in regions with groundwater overexploitation.

Keywords


1. Abidin, H., Djaja, R., Darmawan, D., Hadi, S., Akbar, A., Rajiyowiryono, H., & Subarya, C. (2001). Land subsidence of Jakarta (Indonesia) and its geodeticmonitoring system. Natural Hazards, 23(2–3), 365-387. http://dx.doi.org/10.1023/A:1011144602064.
2. Abidin, H.Z., Andreas, H., Djaja, R., Darmawan, D., & Gamal, M. (2008). Land subsidence characteristics of Jakarta between 1997 and 2005, as estimated using GPS surveys. GPS Solutions 12(1), 23-32. http://dx.doi.org/10.1007/s10291-10007-10061-10290.
3. Akbari, V., & Motagh, M. (2012). Improved ground subsidence monitoring using small baseline SAR interferograms and a weighted least squares inversion algorithm. IEEE Geosci. Remote Sens. Lett. 9(3), 437-441. http://dx.doi.org/10.1109/LGRS.2011.2170952.
4. Amighpey, M., & Arabi, S. (2016). Study land subsidence in Yazd Province, Iran, through the integration of InSAR and levelling measurements. Remote Sensing Application: Society and Environment, 4, 1-8. [In Persian].
5. Amirahmadi, A., Maali Ahari, N., & Ahmadi, T. (2013). The determination of probable subsidence areas of Ardebil plain by the use of GIS. Geography and Planning Journal, 46, 1-23. [In Persian].
6. Anderssohn, J., Wetzel, H. U., Walter, T. R., Motagh, M., Djamour, Y., & Kaufmann, H. (2008). Land subsidence pattern controlled by old alpine basement faults in the Kashmar Valley, Northeast Iran: Results from InSAR and levelling. Geophys. J. Int. 174(1), 287-294.
7. Bawden, G. W., Thatcher, W., Stein, R. S., Hudnut, K. W., & Peltzer, G. (2001). Tectonic contraction across Los Angeles after removal of groundwater pumping effects. Nature, 412(6849), 812-815.
8. Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 40(11), 2375-2383.
9. Bundschuh, J. (2010). Introduction to the numerical modeling of groundwater and geothermal systems: Fundamentals of mass, energy and solute transport in Poroelastic rocks. CRC Press 0415404231.
10. Burbey, T. J. (2008). The influence of geologic structures on deformation due to groundwater withdrawal. Ground Water, 46(2), 202-211.
11. Calderhead, A. I., Therrien, R., Rivera, A., Martel, R., & Garfias, J. (2011). Simulating pumping induced regional land subsidence with the use of InSAR and field data in the Toluca Valley, Mexico. Adv. Water Resour, 34(1), 83-97.
12. Canova, F., Tolomei, C., Salvi, S., Toscani, G., & Seno, S. (2012). Land subsidence along the Ionian coast of SE Sicily (Italy), detection and analysis via Small Baseline Subset (SBAS) multitemporal differential SAR interferometry. Earth Surface Processes and Landforms, 37(3), 273-286.
13. Castellazzi, P., Arroyo-Dominguez, N., Martel, R., Calderhead, A. I., Normand, J. C., Garfias, J., & Rivera, A. (2016). Land subsidence in major cities of Central Mexico: Interpreting InSAR-derived land subsidence mapping with hydrogeological data. International Journal of Applied Earth Observation and Geoinformation, 47, 102-111.
14. Casu, F., Manzo, M., & Lanari, R. (2006). A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data. Remote Sens. Environ. 102(3), 195-210.
15. Chaussard, E., Wdowinski, S., Cabral-Cano, E., & Amelung, F. (2014). Land subsidence in central Mexico detected by ALOS InSAR time-series. Remote Sensing of Environment, 140, 94-106.
16. Cheng-sheng, Y., Qin, Z., Chao-ying, Z., Qing-liang, W., & Ling-yun, J. (2014). Monitoring land subsidence and fault deformation using the small baseline subset InSAR technique: A case study in the Datong Basin, China, Journal of Geodynamics, 75, 34-40.
17. Davoodijam, M., Motagh, M., & Momeni, M. (2015). Land subsidence in Mahyar Plain, Central Iran, investigated using Envisat SAR Data. In The 1st International Workshop on the Quality of Geodetic Observation and Monitoring Systems (QuGOMS'11) (pp. 127-130). Springer, Cham.
18. Dehghani, M. (2014). An enhanced algorithm based on radar interferometry for monitoring land subsidence caused by over-exploitation of groundwater. Journal of Geospatial Information Technology, 2, 61-73. [In Persian].
19. Dehghani, M., Valadan Zoej, M. J., Entezam, I., Mansourian, A., & Saatchi, S. (2009). InSAR monitoring of progressive land subsidence in Neyshabour, Northeast Iran. Geophys. J. Int. 178(1), 47-56.
20. Dehghani, M., Valadan Zoej, M. J., Saatchi, S., Biggs, J., Parsons, B., & Wright, T. (1388/2009). Rader interferometry time series analysis of Mashhad subsidence. Journal of the Indian Society of Remote Sensing (ISRS), 37, 147-156. [In Persian].
21. Dehghani, M., Valadanzoej, M. J., Entezam, I., Saattchi, S., & Shemshaki, A. (1389/2010). Interferometric measurements of ground surface subsidence induced by overexploitation of groundwater. Journal of Applied Remote Sensing, 4(1), 041864. [In Persian].
22. Dehghani, M., Zoej, M. J. V., & Entezam, I. (2013). Neural network modelling of Tehran land subsidence measured by persistent scatterer interferometry. Photogramm. Fernerkundung Geoinf, 1, 5-17. http://dx.doi.org/10.1127/1432-8364/2013/0154.
23. Ezquerro, P., Herrera, G., Marchamalo, M., Tomas, R., Bejar-Pizarro, M., & Martinez, R. (2014). A quasi-elastic aquifer deformational behavior: Madrid aquifer case study. Journal of Hydrology, 519, 1192-1204.
24. Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens, 39(1), 8-20.
25. Ferretti, A., Savio, G., Barzaghi, R., Borghi, A., Musazzi, S., Novali, F., & Rocca, F. (2007). Submillimeter accuracy of InSAR time series: experimental validation. IEEE Trans.Geosci. Remote Sens. 45(5), 1142-1153.
26. Galloway, D. L., Hudnut, K. W., Ingebritsen, S. E., Phillips, S. P., Peltzer, G., Rogez, F., & Rosen, P. A. (1998). Detection of aquifer system compaction and land subsidence using interferometricsynthetic aperture radar, Antelope Valley, Mojave Desert, California. Water Resour. Res. 34(10), 2573-2585. http://dx.doi.org/10.1029/2598wr01285.
27. Gong, H., Zhu, L., Li, X., Wang, R., Chen, B., Dai, Z., & Teatini, P. (2015). Land subsidence due to groundwater withdrawal in the Northern Beijing plain, China. Engineering Geology, 193, 243-255.
28. Haghighatmehr, P., Valdan Zouj, M., Tajik, R., Jabari, S., Sahebi, M., Eslami, R., & Dehghani, M. (2013). Time series analysis of Hashtgerd subsidence using radar interferometry and global positioning system. Geoscience Journal, 85, 105-114.
29. Herrera, G., Fernandez, J. A., Tomas, R., Cooksley, G., & Mulas, J. (2009). Advanced interpretationof subsidence in Murcia (SE Spain) using A-DInSAR data–modelling and validation. Nat. Hazards Earth Syst. Sci. 9(3), 647-661.
30. Hoffmann, J., Zebker, H. A., Galloway, D. L., & Amelung, F. (2001). Seasonal subsidence and rebound in Las Vegas Valley, Nevada, observed by synthetic aperture radar interferometry. Water Resources Research, 37(6), 1551-1566.
31. Holzer, T. L., & Galloway, D. L. (2005). Impacts of land subsidence caused by withdrawal of underground fluids in the United States. Humans as geologic agents, 16, 87-99.
32. Huang, B., Shu, L., & Yang, Y. S. (2012). Groundwater overexploitation causing land subsidence: hazard risk assessment using field observation and spatial modelling. Water resources management, 26(14), 4225-4239.
33. Karimi, M., Ghanbari, A., & Amiri, Sh. (1392/2013). Measurement of the level of risk of land subsidence in No.18 urban residence area of Tehran. Journal of spatial planning, (1), 37-56. [In Persian].
34. Kazemi, G. A., Parhizkar, S., Ajdari, K., & Emamgholizadeh, S. (2015). Predicting of land subsidence in Damghan aquifer by combining GMS and GEP models. Geopersia, (5), 63-80.
35. Khamehchiyan, M., Mohmoudpour, M., Nikudel, M., & Ghassemi, M. (2016). Numerical simulation and prediction of regional land subsidence caused by groundwater exploitation in the southwest plain of Tehran, Iran. Engineering Geology, (201), 6-28.
36. Komak Panah, A. (2007). Geotechnical Investigation on the Land Failure of Yazd-Ardakan Road Network. Transportation Research Journal, (2), 181-193.
37. Larson, K. J., Bas Agaoglu, H., & Marino, M. A. (2001). Prediction of optimal safe ground water yield and land subsidence in the Los Banos Kettleman City area, California, using a calibrated numerical simulation model. Journal of Hydrology, (242), 79-102.
38. Lu, Z., Qu, F., Zhang, Q., Zhao, C., Yang, C., & Zhang, J. (2014). Land subsidence and ground fissures in Xi an, China 2005-2012 revealed by multi-band InSAR time-series analysis. Remote Sensing of Environment, (155), 366-376.
39. Lundgren, P., Usai, S., Sansosti, E., Lanari, R., Tesauro, M., Fornaro, G., & Berardino, P. (2001). Modeling surface deformation observed with SAR interferometry at Campi Flegrei Caldera. Journal of Geophysical Research: Solid Earth, (106), 19355- 19367.
40. Mahalati, S. (1994). Man, Society, Environment. Tehran: Shahid Beheshti University Publication. [In Persian].
41. Manzo, M., Fialko, Y., Casu, F., Pepe, A., & Lanari, R. (2012). A quantitative assessment of DInSAR measurements of interseismic deformation: the southern San Andreas Fault case study. Pure Appl. Geophys, 169 (8), 1463–1482.
42. Motagh, M., Djamour, Y., Walter, T. R., Wetzel, H. U., Zschau, J., & Arabi, S. (2007). Land subsidence in Mashhad Valley, northeast Iran: results from InSAR, levelling and GPS. Geophysical Journal International, 168(2), 518-526.
43. Nikos, S., Ioannis, P., Constantinos, L., Paraskevas, T., Anastasia, K., & Charalambos, k. (2016). Land subsidence rebound detected via multi-temporal InSAR and ground truth data in Kalochori and Sindos regions, Northern Greece. Engineering Geology, (209), 175-186.
44. Qorbani, M., Rafiei, H., & Amjadi, A. (2014). Study of Comparative Advantage in Production of Agricultural Crops in Fars Province. Agriculture Economic and Development. (88), 112-131.
45. Rigo, A., Bejar-Pizarro, M., & Martinez-Diaz, J. (2013). Monitoring of Guadalentin valley (southern Spain) through a fast SAR interferometry method. Journal of Applied Geophysics, 91, 39–48.
46. Riley, F.S. (1969). Analysis of borehole extensometer data from central California. 2nd International Symposium on Land Subsidence, (2), 423–432.
47. Schmidt, D. A., & Burgman, R. (2003). Time-dependent land uplift and subsidence in the Santa Clara valley, California, from a large interferometric synthetic aperture radar dataset. Journal of Geophysical Research, 108(B9), 2416.
48. Setyawan, A., Fukuda, Y., Nishijima, J., & Kazama, T. (2015). Detecting land subsidence using gravity method in Jakarta and Bandung area, Indonesia. Procedia Environmental Science, (23), 17-26.
49. Shamshiri, R., Motagh, M., Baes, M., & Sharifi, M. (2014). Deformation analysis of the Lake Urmia causeway (LUC) embankments in Northwest Iran: insights from multi-sensor interferometry synthetic aperture radar (InSAR) data and finite element modeling (FEM). Journal of Geodesy, 88 (12), 1171–1185.
50. Sharifikia, M., Afzali, A., & Shayan, S. (2015). Extracting and evaluating the effects of geomorphologic phenomena caused by subsidence in Damghan plain. Journal of Quantitative Geomorphology Research (2), 60-74.
51. Sharifikia, M., Malamiri, N., & Shayan, S. (2011). Measuring the vulnerability of rural settlements of Velasht district due to terrestrial hazards. Journal of spatial planning, (1), 126-150.
52. Sharifikia, M., Malamiri, N., & Shayan, S. (2013). Measuring Urban Vulnerability upon land Subsidence Risk Case Study (Part of South Tehran). Geography and environmental hazards journal. (5): 91-106.
53. Sharma, P.E., Jones, C., Dudas, J.W., Bawden, G., & Deverel, S. (2016). Monitoring of subsidence with UAVSAR on Sherman Island in California s Sacramento_San Joaquin Delta. Remote Sensing of Environment, (181), 218-236.
54. Sowter, A., Amat, M. B. C., Cigna, F., Marsh, S., Athab, A., & Alshammari, L. (2016). Mexico City land subsidence in 2014–2015 with Sentinel-1 IW TOPS: Results using the Intermittent SBAS (ISBAS) technique. International Journal of Applied Earth Observation and Geoinformation, 52, 230-242.
55. Teatini, P., Tosi, L., Strozzi, T., Carbognin, L., Wegmüller, U., & Rizzetto, F. (2005). Mapping regional land displacements in the Venice coastland by an integrated monitoring system. Remote Sensing of Environment, 98(4), 403-413.
56. Thomas, G., & Anderson, C. (2005). Land hazard and risk. New York, John Wiley and Sons Ltd.
57. Tomas, R. Herrera, G. Delgado, J. Lopez-Sanchez, J. M. Mallorqui, J. J. and Mulas, J. (2010). A ground subsidence study based on DInSAR data: Calibration of soil parameters and subsidence prediction in Murcia City (Spain). Eng. Geol. 111(1-4), 19-30.
58. Tung, H., Chen, H. Y., Hu, J. C., Ching, K. E., Chen, H., & Yang, K. H. (2016). Transient deformation induced by groundwater change in Taipei metropolitan area revealed by high resolution X-band SAR interferometry. Tectonophysics, 692, 265-277.
59. Zebker, H. A., & Villasenor, J. (1992). Decorrelation in interferometric radar echoes. IEEE Transactions on Geoscience and Remote Sensing, 30(5), 950-959.
CAPTCHA Image