Purpose- The groundwater system is subject to drastic changes. Nonlinear changes in the groundwater system and management have made it difficult. There has been no study on groundwater dynamics assessment and most studies have examined the variables of salinity control, pollution, water volume and water demand. In addition to filling the study gap, the difference of the research is that it has studied the capacity and the elements of the groundwater system as indicators in the groundwater dynamics. Design/methodology/approach- In this study, using studies and literature on the groundwater Social-Ecological System (SES), a framework for evaluating groundwater SES dynamics by combining the groundwater adaptive cycle is presented. SES Groundwater consists of three subsystems: the aquifer, natural environment, and community. The elements of these three subsystems move in a four-stage adaptive cycle of exploitation, protection, release, and reorganization, in which potential change, connections, and adaptive capacity make the system dynamic. Findings - In assessing the dynamics of the groundwater system, the threshold of concern is an important concept for indicators for which capacity can not be defined or when and where the indicators change. Originality/value - The groundwater system dynamics assessment framework can be useful for proper management and timely actions to protect water and aquifer services in different areas.
Adobor, H. (2020). Supply chain resilience: an adaptive cycle approach. The International Journal of Logistics Management. DOI:10.1108/IJLM-01-2020-0019.
Allen, D. M., Mackie, D. C., & Wei, M. J. H. J. (2004). Groundwater and climate change: a sensitivity analysis for the Grand Forks aquifer, southern British Columbia, Canada.Hydrogeology Journal, 12(3), 270-290. doi:10.1007/s10040-003-0261-9
Behyari, M., Jabari, A., & Alizadeh, A. (2020). Monitoring of buried faults and their role on the groundwater flow in the Urmia plain. Hydrogeology, 5(1), 98-109. DOI:22034/HYDRO.2020.10456.
Biggs, R., Gordon, L., Raudsepp-Hearne, C., Schlüter, M., & Walker, B. (2015). Principle 3–Manage slow variables and feedbacks. Principles for building resilience: Sustaining ecosystem services in social-ecological systems, 105-141. https://www.stockholmresilience.org/publications/ -manage-slow-variables-and-feedbacks.html.
Bishop, J. M., Glenn, C. R., Amato, D. W., & Dulai, H. (2017). Effect of land use and groundwater flow path on submarine groundwater discharge nutrient flux. Journal of Hydrology: Regional Studies, 11, 194-218, doi:10.1016/j.ejrh.2015.10.008.
Blomquist, W. (2020). Beneath the surface: complexities and groundwater policy-making. Oxford Review of Economic Policy, 36(1), 154-170. doi:10.1093/oxrep/grz033.
Bouchet, L., Thoms, M. C., & Parsons, M. (2019). Groundwater as a social-ecological system: A framework for managing groundwater in Pacific Small Island Developing States. Groundwater for Sustainable Development, 8, 579-589. doi 10.1016/j.gsd.2019.02.008.
Boulton, A. J., & Hancock, P. J. (2006). Rivers as groundwater-dependent ecosystems: a review of degrees of dependency, riverine processes and management implications. australian Journal of Botany, 54(2), 133-144. https://www.publish.csiro.au/bt/BT05074.
Bresci, E., & Castelli, G. (2021). Water Harvesting in Farmlands. Handbook of Water Harvesting and Conservation: Basic Concepts and Fundamentals, 87-100. https://10.1002/978 1119478911.ch6.
Daedlow, K., Beckmann, V., & Arlinghaus, R. (2011). Assessing an adaptive cycle in a social system under external pressure to change: the importance of intergroup relations in recreational fisheries governance. Ecology and Society, 16(2). https://www.jstor.org/stable/26268880.
Dietz, T., E. Ostrom, and P.C. Stern. 2003. The struggle to govern the commons. Science 302, no. 5652: 1907–1912. DOI: 10.1126/science.1091015.
Earman, S., & Dettinger, M. (2011). Potential impacts of climate change on groundwater resources–a global review. Journal of water and climate change, 2(4), 213-229. https://doi.org/10.2166/wcc.2011.034.
Escamilla Nacher, M., Ferreira, C. S. S., Jones, M., & Kalantari, Z. (2021). Application of the Adaptive Cycle and Panarchy in La Marjaleria Social-Ecological System: Reflections for Operability. Land, 10(9), 980. https://doi.org/10.3390/land10090980.
Fath, B.D., Dean, C.A., Katzmair, H., )2015(. Navigating the adaptive cycle: an approach to managing the resilience of social systems. Ecol. Soc. 20, 24. https://www.jstor.org/stable/26270208.
Foster, S., & van der Gun, J. (2016). Groundwater governance: key challenges in applying the global framework for action. Hydrogeology Journal, 24(4), 749-752. https://doi.org/10.1007/s 10040-016-1376-0.
Foster, S., Pulido-Bosch, A., Vallejos, Á., Molina, L., Llop, A., & MacDonald, A. M. (2018). Impact of irrigated agriculture on groundwater-recharge salinity: a major sustainability concern in semi-arid regions. Hydrogeology Journal, 26(8), 2781-2791. https://doi.org/10.1007/s10040-018-1830-2.
Gejl, R. N., Bjerg, P. L., Henriksen, H. J., Bitsch, K., Troldborg, L., Schullehner, J., ... & Rygaard, M. (2020). Relating wellfield drawdown and water quality to aquifer sustainability–A method for assessing safe groundwater abstraction. Ecological Indicators, 110, 105782. https://doi.org/10.1016/j.ecolind.2019.105782.
Grundmann, P., Ehlers, M. H., & Uckert, G. (2012). Responses of agricultural bioenergy sectors in Brandenburg (Germany) to climate, economic and legal changes: An application of Holling's adaptive cycle. Energy Policy, 48, 118-129. https://doi.org/10.1016/j.enpol.2012.04.051
Habiba, U., Abedin, M. A., Shaw, R., & Hassan, A. W. R. (2014). Salinity-induced livelihood stress in coastal region of Bangladesh. In Water insecurity: A social dilemma. Emerald Group Publishing Limited, https://www.emerald.com/insight/content/doi/10.1108/S2040-7 262%282013% 290000013013/full/html.
Henriksen, H. J., Troldborg, L., Højberg, A. L., & Refsgaard, J. C. (2008). Assessment of exploitable groundwater resources of Denmark by use of ensemble resource indicators and a numerical groundwater–surface water model. Journal of Hydrology, 348(1-2), 224-240. https://doi.org/10.1016/j.jhydrol.2007.09.056.
Holling, C. S. )1986(. The resilience of terrestrial ecosystems; local surprise and global change. Pages 292-317 in W. C. Clark and R. E. Munn, editors. Sustainable development of the biosphere. Cambridge University Press, Cambridge, UK. https://pure.iiasa.ac.at/13667.
Holling, C. S., & Gunderson. L.H. )2002(. Resilience and adaptive cycles. Pages 25-62 in L. H. Gunderson and C. S. Holling, editors. Panarchy: understanding transformations in human and natural systems. Island Press, Washington, D.C., USA. http://hdl.handle.net/10919/67621
Holling, C.S. (2001). Understanding the complexity of economic, ecological, and social systems. Ecosystems, 4(5), 390-405. https://doi.org/10.1007/s10021-001-0101-5.
Hund, S. V., Allen, D. M., Morillas, L., & Johnson, M. S. (2018). Groundwater recharge indicator as tool for decision makers to increase socio-hydrological resilience to seasonal drought. Journal of Hydrology, 563, 1119-1134, https://doi.org/10.1016/j.jhydrol.2018.05.069.
Jasechko, S., Birks, S. J., Gleeson, T., Wada, Y., Fawcett, P. J., Sharp, Z. D., ... & Welker, J. M. (2014). The pronounced seasonality of global groundwater recharge. Water Resources Research, 50(11), 8845-8867. https://doi.org/10.1002/2014WR015809
Kløve, B., Ala-Aho, P., Bertrand, G., Boukalova, Z., Ertürk, A., Goldscheider, N., ... & Widerlund, A. (2011). Groundwater-dependent ecosystems. Part I: Hydroecological status and trends. Environmental Science & Policy, 14(7), 770-781. https://doi.org/10.1016/j.envsci. 2011.04.002.
Konikow, L.F. (2013). Groundwater depletion in the United States (1900-2008). USGS Scientific Investigations Report 2013- 5079. Reston, Virginia: USGS. https://doi.org/10.3133/sir20135079
Kopeć, D., Michalska-Hejduk, D., & Krogulec, E. (2013). The relationship between vegetation and groundwater levels as an indicator of spontaneous wetland restoration. Ecological Engineering, 57, 242-251. https://doi.org/10.1016/j.ecoleng.2013.04.028
Li, Y., Kappas, M., & Li, Y. F. (2017). Exploring the coastal urban resilience and transformation of coupled human-environment systems. Journal of Cleaner Production, 195, 1505–1511. https://doi.org/10.1016/j.jclepro.2017.10.227
Linnenluecke, M.K., & Griffiths, A. (2010). Corporate sustainability and organizational culture. Journal of World Business, 45(4), 357-366. https://doi.org/10.1016/j.jwb.2009.08.006
Liu, D., Cao, C., Chen, W., Ni, X., Tian, R., & Xing, X. (2017). Monitoring and predicting the degradation of a semi-arid wetland due to climate change and water abstraction in the Ordos Larus relictus National Nature Reserve, China. Geomatics, Natural Hazards and Risk, 8(2), 367-383. https://doi.org/10.1080/19475705.2016.1220024
Majidipour, F., Najafi, S. M. B., Taheri, K., Fathollahi, J., & Missimer, T. M. (2021). Index-based Groundwater Sustainability Assessment in the Socio-Economic Context: a Case Study in the Western Iran. Environmental Management, 67(4), 648-666. https://doi.org/10.1007/s00267-021-01424-7
Mathias, J. D., Anderies, J. M., Baggio, J., Hodbod, J., Huet, S., Janssen, M. A., & Schoon, M. (2020). Exploring non-linear transition pathways in social-ecological systems. Scientific. https://doi.org/10.1038/s41598-020-59713-w
Molle, F., & Closas, A. (2020). Why is state‐centered groundwater governance largely ineffective? A review. Wiley Interdisciplinary Reviews: Water, 7(1), e1395. https://doi.org/10.1002/wat2.1395
Petit, O., Kuper, M., López-Gunn, E., Rinaudo, J. D., Daoudi, A., & Lejars, C. (2017). Can agricultural groundwater economies collapse? An inquiry into the pathways of four groundwater economies under threat. Hydrogeology Journal, 25(6), 1549-1564. https://DOI:10.1007/s10040-017-1567-3
Popa, C. L., Bretcan, P., Radulescu, C., Carstea, E. M., Tanislav, D., Dontu, S. I., & Dulama, I. D. (2019). Spatial distribution of groundwater quality in connection with the surrounding land use and anthropogenic activity in rural areas. Acta Montanistica Slovaca, 24(2). https://actamont.tuke.sk/pdf/2019/n2/1popa.pdf
Pulido-Bosch, A., Rigol-Sanchez, J. P., Vallejos, A., Andreu, J. M., Ceron, J. C., Molina-Sanchez, L., & Sola, F. (2018). Impacts of agricultural irrigation on groundwater salinity. Environmental earth sciences, 77(5), 197, https://doi.org/10.1007/s12665-018-7386-6
Thapa, R., Thoms, M., & Parsons, M. (2016). An adaptive cycle hypothesis of semi‐arid floodplain vegetation productivity in dry and wet resource states. Ecohydrology, 9(1), 39-51. https://doi.org/10.1002/eco.1609
Vrba, J., Girman, J., van der Gun, J., Haie, N., Hirata, R., Lopez-Gunn, E., ... & Wallin, B. (2007). Groundwater resources sustainability indicators (Vol. 14, p. 114). A. Lipponen (Ed.). Paris: Unesco.
Walker, B., Holling, C.S., Carpenter, S.R., & Kinzig, A. (2004). Resilience, adaptability, and transformability in social-ecological systems. Ecology and Society, 9(2), 5. https://www.jstor.org/stable/26267673
Williams, A., Whiteman, G., & Kennedy, S. (2019). Cross-scale systemic resilience: implications for organization studies. Business & Society, 1-30. https://doi:10.1177/0007650319825870
Wycisk, C., McKelvey, B., & H€ulsmann, M. (2008). “Smart parts” supply networks as complex adaptive systems: analysis and implications”, International Journal of Physical Distribution and Logistics Management, 30(2), 108-125. https://doi.org/10.1108/09600030810861198.
Xu, Y. S., Shen, S. L., Du, Y. J., Chai, J. C., & Horpibulsuk, S. (2013). Modelling the cutoff behavior of underground structure in multi-aquifer-aquitard groundwater system. Natural hazards, 66(2), 731-748, https://doi.org/10.1007/s11069-012-0512-y
Zhang, L., Huang, Q., He, C., Yue, H., & Zhao, Q. (2021). Assessing the dynamics of sustainability for social-ecological systems based on the adaptive cycle framework: A case study in the Beijing-Tianjin-Hebei urban agglomeration. Sustainable Cities and Society. https://doi.org/10.1016/j.scs.2021.102899
Taghilou, A. (2024). A Conceptual Framework for Groundwater System Dynamics Evaluation by Combining Adaptive Cycle Theory and Social-Ecological System. Journal of Research and Rural Planning, 13(2), 33-52. doi: 10.22067/jrrp.v13i2.2310-1090
MLA
Taghilou, A. . "A Conceptual Framework for Groundwater System Dynamics Evaluation by Combining Adaptive Cycle Theory and Social-Ecological System", Journal of Research and Rural Planning, 13, 2, 2024, 33-52. doi: 10.22067/jrrp.v13i2.2310-1090
HARVARD
Taghilou, A. (2024). 'A Conceptual Framework for Groundwater System Dynamics Evaluation by Combining Adaptive Cycle Theory and Social-Ecological System', Journal of Research and Rural Planning, 13(2), pp. 33-52. doi: 10.22067/jrrp.v13i2.2310-1090
CHICAGO
A. Taghilou, "A Conceptual Framework for Groundwater System Dynamics Evaluation by Combining Adaptive Cycle Theory and Social-Ecological System," Journal of Research and Rural Planning, 13 2 (2024): 33-52, doi: 10.22067/jrrp.v13i2.2310-1090
VANCOUVER
Taghilou, A. A Conceptual Framework for Groundwater System Dynamics Evaluation by Combining Adaptive Cycle Theory and Social-Ecological System. Journal of Research and Rural Planning, 2024; 13(2): 33-52. doi: 10.22067/jrrp.v13i2.2310-1090
Send comment about this article