Integration of Neural Network, Markov Chain and CA Markov Models to Simulate Land Use Change Region of Behbahan

Fatemeh Mohammadyari 1* - Hamidreza Pourkhabbaz 2- Mortaza Tavakoli 3- Hossain Aghdar 4

1. PhD. in Evaluation and Land Use Planning, Malayer University, Malayer, Iran.
2. Assistant Prof. in Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
3. Associate prof. in Geography and Rural Planning, Tarbiat Modares University, Iran.
4. MSc in Remote Sensing and GIS, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

Received: 9 February 2021 Accepted: 23 June 2021

Abstract

Purpose- Land is the place of earthly natural ecosystem functionality that has been used by humans in multiple methods. Land-use change (LUC) simulation is the most important method for researching LUC, which leads to some environmental issues such as the decreasing supply of forestry products and increasing levels of greenhouse gas emissions. Therefore, the present study aims at (i) using the Landsat imagery to prepare land use-cover (LULC) maps for 2000 and 2014; (ii) assessing Land use changes based on land change modeler (LCM) for the period from 2000 to 2014, and (iii) predicting the plausible land cover pattern in the region of Behbahan, using an algorithm based on ANN for 2028.

Design/methodology/approach- A hybrid model consisting of a neural network model, Markov chain (MC), and cellular automata (CA Markov) was designed to improve the performance of the standard network model. The modeling of transfer power is done by multilayer Perceptron of an artificial neural network and six variables. The change allocated to each use and the forecasting is computed by Markov chain and CA Markov. Operation model calibration and verification of land use data at two points were conducted in 2000 and 2014.

Findings- Modeling results indicate that the model validation phase has a good ability to predict land-use change on the horizon is 14 years old (2028). The comparison between modeling map and map related to 2013 shows that residential area and agricultural land continue to their growth trend so that residential area will be increased from 3157 hectares in 2014 to 4180 hectares in 2028 and it has 2% growth that has been 2% from 2000 to 2014. The results of this study can provide a suitable perspective for planners to manage land use regarding land-use changes in the past, present, and future. They are also can be used for development assessment projects, the cumulative effects assessment, and the vulnerable and sensitive zone recognition.

Keywords- Change Detection, Neural Network, Markov Chain, CA Markov, Behbahan County.

How to cite this article:

http://dx.doi.org/10.22067/jrrp.v10i3.2102.1005

*Corresponding Author:
Mohammadyari, Fatemeh, Ph.D.
Address: Department of Environment, Faculty of Natural Resources & Environment, Malayer University, Malayer, Iran.
Tel: +98813 245 6518
E-mail: m.fatima.1364@gmail.com
1. Introduction

The land is the place of earthly natural ecosystem functionality that has been used by humans in multiple methods (Mohammadyari et al., 2020). Land-use change (LUC) simulation is the most important method for researching LUC, which leads to some environmental issues such as the decreasing supply of forestry products and increasing levels of greenhouse gas emissions (Macedo et al., 2013). So, land-use change has attracted the attention of managers and planners who are engaged in the issues related to sustainable urban and environmental development (Mohamed & Worku, 2020). LUC is a complex process (Irwin & Geoghegan, 2001; Lambin et al., 2006), and modeling these systems is challenging. It is well known that the drivers of LUC operate across a variety of spatial-temporal scales in a nonlinear way (Veldkamp & Lambin, 2001) and thus nonlinear tools are needed to simulate these dynamics. The type of land use and the land covering is the result of mutual relation between social-cultural factors and land potential power. In other words, changing land use and the cover is the beginning of the dynamic exploitation of natural resources by human beings to manage their needs (Oñate-Valdivieso & Sendra, 2010).

The consequences of this phenomenon are economic, social, and environmental on local, zonal, and global scales (Koomen et al., 2007). Koomen Remote sensing satellites are the most common data source for recognizing, quantifying, manifesting, and mapping land-use changes patterns (Abd El-Kawy, 2011). Therefore, the manifestation and modeling of land-use changes can offer suitable recognition of these changes by remote sensing data in a GIS environment (Mendoza, 2011; Bakr, 2010). Land Change Modeler can revolutionize the analysis and investigation of land cover changes and predicting land-use changes (Schulz et al., 2010). In this modeling, the most important assumption is that the nature of development and changes remain the same during time and past changes can predict future changes based on a historical scenario. The ecosystem can be guided to the desired path by predicting land-use changes and adopting effective managerial policies (Jensen, 2007). Land cover models are widely used for the analysis and prediction of land-use change (Bonilla-Bedoya et al., 2020; Mohammad & Worku, 2020; Silva et al., 2020; Dadashpoor et al., 2019; Sun et al., 2018; Huilei et al., 2017; Tripathi & Mozrander, 2014; Yang et al., 2014; Pijanowski et al., 2014; Arsanjani et al., 2013; Ma et al., 2017; Perez-Vega et al., 2012; Shahidul Islam & Ahmed, 2011). Among these studies, Mohammad and Worku (2020), simulating the dynamics of land cover using cellular automata and the Markov chain approach in Addis Ababa and its suburbs. The research employed a hybrid Cellular Automata, Markov chain, and multi-criteria analytical hierarchy process modeling approach. The result shows the rapid growth of built-up, which accounts for 3.7% in 2005, 5.7% in 2011, and 7.0% in 2015. Moreover, Silva et al. (2020), modeled the land cover change based on an artificial neural network for a semiarid river basin in northeastern Brazil. The results showed that for 2035, an increase in the herbaceous and shrub vegetation class and a decrease in the area occupied by tree-shrub vegetation are predicted. The study aimed to indicate the land cover alterations in the region of Behbahan between 2000 and 2014 to understand the future land use scenario (2028) of the area through integrating remote sensing and advanced GIS techniques with the ANN model, Markov chain, and CA Markov. The paper is structured as follows. Section 1 presents the study site in Behbahan, the database, and the data preparation process. The two-section briefly introduces the methodology of neural network modeling to determine essential driving forces of sprawl, Markov chain, and CA model. Section 3 discusses the outcomes of the implemented approach, and finally, the paper concludes with a summary and some suggestions for future works.

2. Research Methodology

2.1 Geographical Scope of the Research

The studied region is between 50 degrees and 91 minutes longitude to 50 degrees and 25 minutes eastern, 30 degrees and 45 minutes latitude to north 30 degrees and 32 minutes in zone 39 that the highest altitude is 1380.93 meters and the lowest 267.14. The highest slope is 69.87 and the lowest slope is 1%, the minimum annual temperature is 18.1 c° and the maximum annual temperature is 32.37 °C. The space of area is 615.6 square kilometers and the regional climate is dry based on the Domarten method. A three-
dimensional map of the region is provided by Surfer11 software (Figure 1).

![Figure 1. Location of the study region, Behbahan, Iran](image)

2.2. Methodology

The type of this research is the application and data collection is done in two forms: library and mensuration. It is also used ArcGIS 10, Google EARTH, Surfer11, IDRISI Tiga, and ENNVI 4.8 software. Land use map preparation- Landsat satellite images were used for providing land use maps relating to 2000 and 2014 (Table 1).

<table>
<thead>
<tr>
<th>WRS Row</th>
<th>WRS Patch</th>
<th>Number bands</th>
<th>SIZE Pixels</th>
<th>SENSOR</th>
<th>SPACECRAFT</th>
<th>DATEACQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>164</td>
<td>8</td>
<td>28.5</td>
<td>ETM 7</td>
<td>Landsat-7</td>
<td>2000.01.24</td>
</tr>
<tr>
<td>39</td>
<td>164</td>
<td>11</td>
<td>30</td>
<td>OLI</td>
<td>Landsat-8</td>
<td>2014.01.22</td>
</tr>
</tbody>
</table>

In this research, images were used with real colorful combinations for obvious representation of some special phenomenon relating to research purposes. The combination of band 3 infrared, band 2 with green color, band1 with blue color, or 321 RGB models are used for ETM sensor images creation, and for OLI sensors 432 combinations are used. First of all, geometrical, atmospheric correction and early processing are done on all used images several times. Then, the supervisory classification method is used for classification. In this controlled classification, the first step is the introduction of a region of intersect for each land cover class. Didactic samples are defined by visual interpretations on colorful combination images and by topography maps provided by the Topography Organization of Iran. In this process, the normal differential vegetation index (NDVI) is used for green coverage classification so that the vegetarian cover is separated from others easily and the sampling is done with more accuracy. The numbers of classes are selected according to images from available maps, the condition of the region, and the class required for land coverage maps, and six gained separation classes are: 1. residential area, 2. agricultural land, 3. Water, 4. forests, 5. grasslands, 6. bare lands. After didactic samples are determined, satellite images are classified. In this research, the Maximum Likelihood algorithm (Schulz et al., 2010) and AVI, MNF index is used to make a classification. Image classification is one of the main components in data collection that is achieved through the study of the relationship between spectral effects and classes or different classes (Oommen, 2008). The process of images classification is a conversion of data to comprehensible information (Mountrakis et al., 2011). Then, a mode filter is done on classification results so that images are simplified and small parts are removed (Nahuelhual et al., 2012).
Classification accuracy assessment- To ensure the accuracy of an extracted map from satellite images, its accuracy should be evaluated (Lillesand & Kiefer, 2000). The accuracy of classification represents the confidence level of the extracted map and refers to the adjusting level between remote sensing data and source information (Dewan & Yamaguchi, 2009). Evaluating the accuracy of classified maps is done by specifying 200 points for 2014 images by random stratified sampling in the region and the real land use is compared to them by Garmin 62S GPS. Kappa coefficient is calculated. Kappa shows the accuracy of the map. Amounts between 0 to 100 percent show a specific level for this classification and negative amounts show bad results. Kappa coefficient is above 90 percent which shows the high accuracy of prepared maps.

Changes display- The changes display of land use is an essential tool for environmental analysis, planning, and management. In this research, land use maps relating to 2000, 2014 are entered into the LCM model for analysis and area changes detection. Land change modeler is software to create constant ecological development and it is planned and constructed to identify the increase in land changes and obvious need for biodiversity analysis. It is in IDRISI software and it is also available as an application for Arc GIS. Land change modeler gives a tool to investigate and do the empirical evaluation and modeling of land-use change and its effects on biological variations with the help of the modeler (Eastman, 2006).

Variable election- The variables used for the model are the digital elevation model, slope, distance from residential areas, distance from agricultural lands, distance from roads, and evidence likelihood map. Cramer correlation coefficient is used to determine a correlation between independent variables and dependent variables. This correlation coefficient compares independent variables with subjective classification from land use map (evidence likelihood) (Eastman, 2006). Variables used in this research are used in most of the studies related to land-use change modeling. Euclidian distance analysis is used for providing maps relating to distance from residential are agricultural land and distance from the road. All of the above variables are quantitative. Map relating to transmission from all use to agricultural land and map relating to transmission from agricultural to all uses are produced for land coverage quantitative variables and they are transformed to quantitative variables model input by evidence likelihood deformation and land coverage map in the early year (Eastman, 2006). Potential modeling of land-use change by the artificial neural network of multilayer Perceptron-

In this section of modeling, transformation power from one use (such as a forest) to another use (such as agriculture) becomes a model according to explaining variables (such as slope, nearness to the road) that is each pixel of the image has how much potential to change from one user to another. The output of this section will be a transformation power map for each variable (for example from forest use to agricultural land). Cramer V coefficient is calculated which shows the amount of relationship between variables and land cover. Six sub-models (agricultural to residential, forest to grassland, grassland to agricultural, grassland to arid land, arid land to residential and arid land to agricultural) and six variables (quantitative variable in agricultural sub-model, digital model of altitude, distance from agricultural lands, distance from residential areas, distance from road and slope) are selected to modeling of the possibility of occurrences in each transformation by multilayer Perceptron neural networks (Pijanowski et al., 2002; Chuvieco, 2002).

Markov chain model- The MC model is a stochastic process model that describes how likely one state is to change to another state. It has a key-descriptive tool, which is the transition probability matrix. The MC model is defined as a set of states where a process begins in one of the states and moves consecutively from one state to another; each move is defined as a step (Zhang et al., 2010). In the MC model, two distinct land use maps at different time points should exist, and then it is possible to calculate the probabilities of transition between these time steps. The analysis of the Markov chain is suitable for use changes and land coverage and it’s useful when changes aren’t easily describable. Markov chain is the collection of random values whose possibility in a given time depends on the numbers in the past (Fan et al. 2008).
allocation to each use was calculated by the Markov chain (Haibo et al., 2011; Coppedge et al., 2007; Wu et al., 2006).

CA-Markov model- CA-Markov model incorporates the theories of the Markov chain and Cellular Automata (CA) and is commonly used in predicting LUC (Sang et al., 2011). CA has strong capabilities in simulating the spatiotemporal characteristics of complex systems and can be used to simulate unexpected behaviors of complex systems that cannot be represented by specific equations. Markov chain is commonly used for predicting geographical characteristics lacking after-effect events. When LUC is predicted by the Markov chain, land use is regarded as a stochastic process and different land-use types as the states of a chain (Cabral & Zamyatin, 2009; Clancy et al., 2010). Implementation of the CA-Markov model can be described by the following 3 steps:

1. Calculated transition area matrix using Markov Chain analysis is used to predict the transition area matrix of LUC. At first, the original transition probability matrix (denoted by P) of land use type should be obtained from two former land use maps. Then, according to the non-aftereffect of Markov, the transition probability matrix for target simulation periods can be predicted according to Eq. (1).

\[
P(N) = P(N-1) \times P
\]

where P(N) is the state probability of any time, and P(N−1) is the preliminary state probability. Having a transition probability matrix, the transition area matrix can be easily obtained, which is performed by Eq. (2).

\[
A = \begin{bmatrix}
A_{11} & A_{12} & \cdots & A_{1n} \\
A_{21} & A_{22} & \cdots & A_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
A_{n1} & A_{n2} & \cdots & A_{nn}
\end{bmatrix}
\]

where A is the transition area matrix, A_{ij} is the sum of areas from its land-use class to the i^{th} land use to the j^{th} class during the years from start point to target simulation periods; and n is the number of land-use types. This process can be achieved by utilizing the MARKOV mod in the IDRISI Andes, which is a raster-based spatial analysis software developed by Clark Labs at Clark University. With IDRISI Andes, you can explore, predict, and model impacts on land cover change with the innovative Land Change Modeler facility.

2. Generated transition potential maps

Transition potential maps are the simulation foundation of the Markov-CA model; they are used to control the spatial distribution of land use. At the earliest stage, transition potential maps are generated from the transition probability matrix, which is calculated using Markov Chain. For this type of transition potential maps, patches of a land-use type would transit to other land use classes with the same probabilities. Recently, several studies have attempted to incorporate natural and socioeconomic data (such as slope, elevation, distance to the nearest road, population density, and GDP per capita) to generated transition potential maps. These attempts have helped to improve the simulation accuracy of the Markov-CA model.

3. Simulated land-use change (LUC) using CA model

Simulated LUC using the CA model, provides a spatial framework. Deciding iteration times, integrating transition area matrix and transition potential maps as the local transition rule of CA, land use map in the future could be simulated. The local transition rule of the Markov-CA model can be performed by Eq. (3).

\[
f(Sj = \max(S1, S1, \ldots, Sn) \text{ and } A_{ij} < A_{ij} T \text{ then } Ci \rightarrow Cj
\]

where Sj is the potential of a patch transit to the j^{th} land-use class; Area is the total area from land-use class I to land-use class j in the current iteration; T is iteration times; Ci is the i^{th} land-use class.

3. Research Findings

The classification of images by maximum likelihood classification shows six land use classes in the study area. Figure 2 shows land use maps relating to 2000 and 2014 and their area are shown in Table 2; Kappa coefficient is 94.35 for 2014 and 93.53 for 2000. Moreover, the overall kappa coefficient for 2000 and 2014 maps, 0.95 and 0.97 respectively, were acceptable results.
The result of changes display shows the area was under many changes of land use during 2000 to 2014. These changes include decreases, increases, and mere changes for each class and transformation from one class to another class. The most decrease includes grasslands destruction and their transformation to other uses. In this research, according to changes display results, six sub-models are considered for transformation power modeling by multilayer Perceptron artificial neural network. Sub-models are agricultural to the residential, forest to grasslands, grasslands to agriculture, grasslands to arid land, bare land to residential, and arid land to agriculture. After selecting sub-models, six variables are selected according to regional characteristics. Studying Cramer correlation coefficient, variables whose correlation coefficients are more than 0.1 are selected for modeling (Table 3).
Three accuracy assessment factors, training error, and test error are determined for modeling transformation power modeling (Table 4). Finally, the amount of each use change is predicted by the Markov chain, and land use maps relating to 2028 are drawn in the LCM model by the multilayer Perceptron neural networks method (Figure 4 and Table 5).
Table 4. Accuracy assessment of artificial neural network

<table>
<thead>
<tr>
<th>Accuracy rate</th>
<th>Testing RMS</th>
<th>Training RMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>84.35</td>
<td>0.1493</td>
<td>0.1457</td>
</tr>
</tbody>
</table>

Figure 4. Land use map predicted 2028 (MARKOV chain)

Table 5. User area map modeling (MARKOV chain)

<table>
<thead>
<tr>
<th>Land uses 2028</th>
<th>Area (km²)</th>
<th>Area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>41.8086</td>
<td>7</td>
</tr>
<tr>
<td>Agriculture</td>
<td>210.3687</td>
<td>34</td>
</tr>
<tr>
<td>Water</td>
<td>11.4093</td>
<td>2</td>
</tr>
<tr>
<td>forest</td>
<td>9.3636</td>
<td>2</td>
</tr>
<tr>
<td>Rangeland</td>
<td>76.1544</td>
<td>12</td>
</tr>
<tr>
<td>Bare</td>
<td>266.4954</td>
<td>43</td>
</tr>
<tr>
<td>Total</td>
<td>615.6</td>
<td>100</td>
</tr>
</tbody>
</table>

The possibility of transformation each use to other users is represented by the probability matrix (Table 6).

The transformed area matrix registers the number of cells which are expected in changing from one kind of land coverage to other kinds in the future (Table 7).

Table 6. Transition probability matrix

<table>
<thead>
<tr>
<th>Land uses</th>
<th>Residential</th>
<th>Agriculture</th>
<th>Water</th>
<th>forest</th>
<th>Rangeland</th>
<th>Bare</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>0.9057</td>
<td>0.0287</td>
<td>0.0012</td>
<td>0.0112</td>
<td>0.0033</td>
<td>0.0429</td>
</tr>
<tr>
<td>Agriculture</td>
<td>0.0417</td>
<td>0.9019</td>
<td>0</td>
<td>0.0213</td>
<td>0.0179</td>
<td>0.0172</td>
</tr>
<tr>
<td>Water</td>
<td>0.0159</td>
<td>0.0277</td>
<td>0.6205</td>
<td>0.0590</td>
<td>0.1587</td>
<td>0.1191</td>
</tr>
<tr>
<td>forest</td>
<td>0.1043</td>
<td>0.1312</td>
<td>0.2033</td>
<td>0.2033</td>
<td>0.4049</td>
<td>0.1359</td>
</tr>
<tr>
<td>Rangeland</td>
<td>0.0257</td>
<td>0.2890</td>
<td>0.0113</td>
<td>0.0151</td>
<td>0.3479</td>
<td>0.3110</td>
</tr>
<tr>
<td>Bare</td>
<td>0.0171</td>
<td>0.0686</td>
<td>0.0109</td>
<td>0.0101</td>
<td>0.3042</td>
<td>0.5891</td>
</tr>
</tbody>
</table>

Table 7. Matrix transferred area

<table>
<thead>
<tr>
<th>Land uses</th>
<th>Residential</th>
<th>Agriculture</th>
<th>Water</th>
<th>forest</th>
<th>Rangeland</th>
<th>Bare</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>31778</td>
<td>1009</td>
<td>41</td>
<td>639</td>
<td>116</td>
<td>1504</td>
</tr>
<tr>
<td>Agriculture</td>
<td>6960</td>
<td>150626</td>
<td>0</td>
<td>3559</td>
<td>2985</td>
<td>2875</td>
</tr>
<tr>
<td>Water</td>
<td>202</td>
<td>352</td>
<td>7866</td>
<td>747</td>
<td>2000</td>
<td>1510</td>
</tr>
<tr>
<td>forest</td>
<td>1823</td>
<td>2293</td>
<td>356</td>
<td>3554</td>
<td>7079</td>
<td>2376</td>
</tr>
<tr>
<td>Rangeland</td>
<td>4977</td>
<td>56012</td>
<td>2183</td>
<td>2935</td>
<td>67440</td>
<td>60290</td>
</tr>
<tr>
<td>Bare</td>
<td>4408</td>
<td>17690</td>
<td>2803</td>
<td>2617</td>
<td>78450</td>
<td>151945</td>
</tr>
</tbody>
</table>
This matrix is drawn by multiplying each column from the transformation probability matrix with land use cells relating to it in the second picture (Eastman, 2006). After running Markov, the CA-MARKOV transfer area has tables, maps transfer potential derived from the neural network methods and land use map is the second year of preparation (Figure 5).

Figure 5. Land use map predicted 2028 (CA-MARKOV)

Table 8. User area map modeling (CA-MARKOV)

<table>
<thead>
<tr>
<th>Land uses 2028</th>
<th>Area (km²)</th>
<th>Area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>38.584</td>
<td>7</td>
</tr>
<tr>
<td>Agriculture</td>
<td>149.656</td>
<td>24</td>
</tr>
<tr>
<td>Water</td>
<td>12.965</td>
<td>2</td>
</tr>
<tr>
<td>forest</td>
<td>16.981</td>
<td>3</td>
</tr>
<tr>
<td>Rangeland</td>
<td>204.896</td>
<td>33</td>
</tr>
<tr>
<td>Bare</td>
<td>192.518</td>
<td>31</td>
</tr>
<tr>
<td>Total</td>
<td>615.6</td>
<td>100</td>
</tr>
</tbody>
</table>

4. Discussion and Conclusion

After the two methods produce maps with CA-MARKOV modeling and Markov chain prediction, results were compared with the 2014 land use map. According to two different approaches for modeling, results showed that it map Was predicted by Markov-Chain is closer to reality. So, to create a future scenario in the year 2028, forecast maps with the Markov model were chosen.

In this research, a land change modeler is used for land-use changes modeling in the Behbahan region. The results of land-use changes from 2000 to 2014 show that these changes have occurred in the vast area. Among of studied uses, the most increase happens in the area related to agricultural, residential, and water use, and most of the increase in the area is related to agricultural use (8036.01 hectares). The decrease occurred in the grassland, drier land, and forest use and most of the decrease occurred in the area related to grassland use (4560.39 hectares). The decrease in grassland area and its conversion to other uses include 6233 hectares from grasslands to agriculture, 1199 hectares to dried land, 1146 hectares to a forest, and 599 hectares to the residential area. The comparison between the modeling map and map related to 2013 shows that residential area and agricultural land continue to their growth trend so that residential area will be increased from 3157 hectares in 2014 to 4180 hectares in 2028.

An interesting point is that the number of villages does not increase during these 14 years but the extension of village area will be increased and
agricultural land decreases from 15030 hectares to 2103.6 hectares. The growth percentage of this use land had been 10% from 2000 to 2014 but it will be changeless from 2014 to 2028. The dried land area also will increase 5% more than in 2013. Water zone space will be changeless during these 14 years. The decreasing process will probably occur in the water district and Maroun dam in the future decades. Unfortunately, not only destruction process of grasslands and forests is not avoided but also it is followed with more pace than in the past. Grassland had been 17445 hectares in 2014 but it is 7615 on the modeling map. 637 hectares will be decreased from forest area that it is the warring issue and management activities should be done for maintaining forests so that the problems such as flood, soil erosion, increasing of greenhouse gases, and loss of biodiversity are avoided. The decrease also happens in grassland and forests. The compactness of population centers in Behbahan and changing natural views to urban ones are the greatest changes in this city. It is expected that this process will continue with more pace in the future and the increase in agricultural lands confirms this point. About the decrease in grassland areas, it can be said that the growth of population in villages and the need for food made the villagers change grasslands to agricultural lands. On the other hand, another reason for grassland destruction is the excessive livestock grazing that changes vegetation coverage composition and ranchers destruct and changes forest coverage by grazing livestock from young trees, twig trees, livestock born construction, fuel, and household consumption.

The results of this study (increasing residential areas and decreasing forests and grasslands) are in line with the results of Mohammad and Worku (2020), Silva et al. (2020), Dadashpoor et al. (2019), and Sun et al. (2018). Moreover, the result of transformation power modeling assessment by the artificial neural network shows high accuracy. In many studies (Mohammad & Worku, 2020; Silva et al., 2020; and Perez-Vega et al., 2012), the accuracy of this method has been mentioned. Results of this study show that population growth and urban expansion are the main factors of use changes which are in line with the results of Caldas et al. (2010) and Joorabian Shoshtari et al. (2012). The population of this region has increased from 163032 in 1375 to 180593 in 2016 (www.amar.org.ir). The results of the Cramer correlation coefficient show that the most important independent variable explaining Behbahan city changes sequence are: quantitative variable in the agricultural model, digital elevation model, distance from agricultural land, distance from a residential area, and distance from road and slope. These variables are selected in many studies like Gholamalifard et al. (2013) and Schulz et al. (2010).

This paper tried to demonstrate that this hybrid technique (neural network–Markov–CA) offers certain advantages compared with traditional techniques. Firstly, this approach is capable of considering and integrating environmental and socioeconomic factors, which are not considered in current CA models, SLEUTH (Clarke et al., 1997; Yang & Lo, 2002; Dietzel & Clarke, 2006). Secondly, any spatial factor can be imported to this approach to measure its influence on urban sprawl and, accordingly, can be rejected after statistical assessment. Finally, the mentioned approach was tested and verified in two steps: (i) while the approach was being developed (the model calibration process) and (ii) through the comparison of the actual map and the simulated map of 2006, which was generated to verify the outcome of the approach. Whereas the validation of the current LUC model is still weak (Pontius & Spencer, 2005), it is not feasible to validate the certainty of the simulated maps for the future. Thus, the only possible way to verify the model was to validate it at the most recent time, and following the assurance of the model’s performance, future land use maps could be simulated more confidently.

This research is the presentation of an empirical model between a dependent variable (the amount of land-use change) and independent variables. According to the existence of non-linear relationships among variables, an artificial neural network has been used. The development and changes in nature will be the same during a time and it is the most important hypothesis in this modeling. In the other words, the last changes can predict future changes based on a historical scenario. The results of this study can provide a suitable perspective for planners to manage land use concerning land-use changes in the past, present, and future. They are also can be used for development assessment projects, the cumulative effects assessment, and the vulnerable and
sensitive zone recognition. Finally, the results of this research can be used for performing projects relating to decreasing destruction effects, deforestation, and forest destruction in that the main purpose is decreasing greenhouse gases and maintaining biodiversity.

Acknowledgments: The current paper is extracted from the master thesis of the first author (Fatemeh Mohamamadyari) in the Department of Environment, Faculty of Agriculture & Natural Resources, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.

References

تأثیر تغییرات کاربری زمین منطقه بهبهان

فاطمه محمدیاری، دکتر فاطمه محمدیاری

کلیدواژه‌ها: CA Markov و Markov chain

چکیده مبسوط

تغییرات کاربری زمین در منطقه بهبهان و بررسی تاثیر آن بر محیط زیست

چکیده

تغییرات کاربری زمین از اهمیت بالا برخوردار است. با توجه کاهش موارد مصرف محصولات غیر محیط‌پسند در کشور، حساسیت این منطقه به تغییرات کاربری از جمله آبگیری‌های روستایی، از اهمیت بالایی برخوردار می‌باشد. تصویر کناری این منطقه به تغییرات کاربری و ارائه آن به سازمان‌های مرتبط و مقامات منطقه‌ای، امکان پذیرفتن برنامه‌های پیش‌بینی و مدیریت منابع محیطی را ایجاد می‌دهد. این مقاله تأثیر تغییرات کاربری زمین بر محیط زیست به بهبهان را بررسی می‌کند و با استفاده از GIS و برنامه‌های نرم‌افزاری مرتبط، میزان تأثیر تغییرات کاربری زمین بر محیط زیست محاسبه و ارزیابی می‌شود.
روش تحقیق

این تحقیق از نوع کاربردی و جمعی از اطلاعات به دو شکل کتابخانه و مدل‌بندی (به‌بیانی) انجام گرفته است. م潜艇ین از نرم‌افزارهای ArcGIS و ENVI و IDRISI Tigris Surfer 11 و Google Earth استفاده شده است. برای بهبود استفاده از نرم‌افزارهای ArcGIS و Idrisi Tigris Surfer 11، نقشه‌برداری از منابع جغرافیایی در محدوده شهرستان بهبهان انجام شد. سپس صورت‌گرفت. CA- Markov

افشته‌های تحقیق

در تحقیق حاضر از مدل‌سازی نمایش دهیابی‌های سراسری نمایش دهیابی‌های کاربری اراضی شهرستان بهبهان استفاده شد. نمایش دهیابی‌های کاربری اراضی در سال‌های 1392 تا 1391، تغییرات در منطقه گسترده‌تر به دست آمده است. در بین کاربری‌های اراضی شهرستان بهبهان در کاربری‌های زیست‌جویی مسئولیت‌های مشترک مسئولیت‌های مشترک شده است. کلید‌های عبارت هستند که تغییرات در منظرات تغییرات در منظرات

نشان داده شده است. کلید‌های عبارت هستند که تغییرات در منظرات تغییرات

دیده شده است. کلید‌های عبارت هستند که تغییرات در منظرات تغییرات

click to cite this article:

http://dx.doi.org/10.22067/jrrp.v10i3.2102.1005